

Recipe: A DRY framework for querying data

Release v0.37.2. (Installation)

Recipe is an MIT licensed cross-database querying library, written
in Python. It allows you to reuse SQL fragments to answer data questions
consistently. Extension classes allow you to support data anonymization,
automatic generation of where clauses, user permissioning to data, subselects,
and response formatting.

>>> shelf = Shelf({ 'age': WtdAvgMetric(Census.age, Census.pop2000), 'state': Dimension(Census.state)})
>>> recipe = Recipe().shelf(shelf).metrics('age').dimensions('state').order_by('-age')

>>> recipe.to_sql()
SELECT census.state AS state,
 CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS age
FROM census
GROUP BY census.state
ORDER BY CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) DESC

>>> recipe.dataset.csv
state,age,state_id
Florida,39.08283934000634,Florida
West Virginia,38.555058651148165,West Virginia
Maine,38.10118393261269,Maine
Pennsylvania,38.03856695544053,Pennsylvania
...

Getting started

	Introduction
	Recipe License

	Pythons Supported

	Installation
	Installing Recipe

	Download the Source

	Getting Started
	Creating a Shelf

	Using the Shelf to build a Recipe

	Defining Shelves and Recipes Using Configuration

	Adding Features with Extensions

Key Concepts

	Overview of Recipe Concepts
	Extensions

	Ingredients
	Creating ingredients in python
	Features of ingredients

	Types of Ingredients
	Dimension

	Metric

	DivideMetric

	WtdAvgMetric

	Filter

	Having

	Shelves

	Defining Shelves from configuration
	Defining Shelves

	Defining Ingredients
	Metric

	Dimension

	Defining Fields
	Defining Fields with Dicts

	Defining Fields with Strings

	Defining Field Operators

	Defining Conditions
	ands and ors in conditions

	Date conditions

	Labeled conditions

	Examples
	A simple shelf with conditions

	Metrics referencing other metric definitions

	Dimensions containing buckets

	Using Shelves from configuration
	When are Shelves from configuration bound to columns?

	Binding a shelf to a Mapping

	Binding a shelf to a SQLAlchemy subselect

	Binding a shelf to a Recipe

	Using Extensions
	AutomaticFilters: Simple filtering

	CompareRecipe: Generating comparison values

	BlendRecipe: Combining recipes from different tables

	Anonymize: Realistic random data

	Paginate and PaginateInline: Returning data in pages

Advanced Topics

	Settings

	Ovens
	Initializing an Oven

	Oven Drivers

	Hooks

API Reference

	API
	Recipe

	Shelf

	Ingredients

	Extensions

	Exceptions

Contributing to Development

	Development
	Conventions

	Source Control
	Git Branch Structure

	Adding New Extensions

	Adding New Ingredients

	Testing Recipe

	Continuous Integration

	Building the Docs

	Custom Oven Drivers
	OvenBase

	Dynamic Extensions
	DynamicExtensionBase

	Changelog
	v0.37.2 (2023-10-05)

	v0.37.1 (2023-09-19)

	v0.37.0 (2023-09-18)

	v0.36.7 (2023-09-19)

	v0.36.6 (2023-08-24)

	v0.36.5 (2023-08-17)

	v0.36.4 (2023-08-17)

	v0.36.3 (2023-08-17)

	v0.36.2 (2023-08-14)

	v0.36.1 (2023-08-01)

	v0.36.0 (2023-07-18)

	v0.35.5 (2023-06-12)

	v0.35.4 (2023-06-12)

	v0.35.3 (2023-06-12)

	v0.35.2 (2023-06-01)

	v0.35.1 (2023-04-20)

	v0.35.0 (2023-04-09)

	v0.34.1 (2023-04-06)

	v0.34.0 (2023-04-06)

	v0.33.0 (2023-03-17)

	v0.32.1 (2023-01-26)

	v0.32.0 (2023-01-19)

	v0.31.6 (2022-12-07)

	v0.31.5 (2022-06-13)

	v0.31.4 (2022-04-04)

	v0.31.3 (2022-04-04)

	v0.31.2 (2022-03-25)

	v0.31.1 (2022-03-24)

	v0.31.0 (2022-03-23)

	v0.30.1 (2022-03-22)

	v0.30.0 (2022-02-15)

	v0.29.3 (2021-12-07)

	v0.29.1 (2021-12-03)

	v0.29.0 (2021-11-17)

	v0.28.1 (2021-10-28)

	v0.28.0 (2021-10-15)

	v0.27.1 (2021-09-14))

	v0.27.0 (2021-08-26)

	v0.26.1 (2021-07-29)

	v0.26.0 (2021-07-15)

	v0.25.1 (2021-06-15)

	v0.25.0 (2021-06-07)

	v0.24.1 (2021-06-10)

	v0.24.0 (2021-05-14)

	v0.23.4 (2021-05-03)

	v0.23.3 (2021-04-29)

	v0.23.2 (2021-02-09)

	v0.23.1 (2021-02-08)

	v0.23.0 (2021-02-01)

	v0.22.1 (2020-12-23)

	v0.22.0 (2020-12-10)

	v0.21.0 (2020-10-20)

	v0.20.1 (2020-10-07)

	v0.20.0 (2020-10-02)

	0.19.1 (2020-09-10)

	0.19.0 (2020-09-04)

	0.18.1 (2020-08-07)

	0.18.0 (2020-07-31)

	0.17.2 (2020-07-21)

	0.17.1 (2020-07-09)

	0.17.0 (2020-06-26)

	0.16.0 (2020-06-19)

	0.15.0 (2020-05-08)

	0.14.0 (2020-03-06)

	0.13.1 (2020-02-11)

	0.13.0 (2020-01-28)

	0.12.0 (2019-11-25)

	0.11.0 (2019-11-07)

	0.10.0 (2019-08-07)

	0.9.0 (2019-08-07)

	0.8.0 (2019-07-08)

	0.7.0 (2019-06-24)

	0.6.2 (2019-06-11)

	0.1.0 (2017-02-05)

Introduction

Recipe is a cross-database querying library, written in Python. It allows you to
reuse SQL fragments that can be composed into queries. An extension classes
allow you to support data anonymization, automatic generation of where clauses,
subselects, and response formatting.

Recipe License

Recipe is released under terms of The MIT License [http://www.opensource.org/licenses/mit-license.php].

Copyright 2017 Chris Gemignani

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Pythons Supported

At this time, the following Python platforms are officially supported:

	cPython 3.6

Support for other Pythons will be rolled out soon.

Now, go Installing Recipe.

Installation

Installing Recipe

Distribute & Pip

The recommended way to install Recipe is with pip [http://www.pip-installer.org/]:

$ pip install recipe

Download the Source

You can also install recipe from source. The latest release (0.37.2) is
available from GitHub.

	tarball [http://github.com/juiceinc/recipe/tarball/master]

	zipball [http://github.com/juiceinc/recipe/zipball/master]

Once you have a copy of the source, you can embed it in your Python package, or
install it into your site-packages easily.

$ python setup.py install

Staying Updated

The latest version of Recipe will always be available here:

	PyPi: http://pypi.python.org/pypi/recipe/

	GitHub: http://github.com/juiceinc/recipe/

When a new version is available, upgrading is simple:

$ pip install recipe --upgrade

Now, go get a Quick Start.

Getting Started

This page gives a good introduction in how to get started with Recipe. This
assumes you already have Recipe installed. If you do not, head over to
Installing Recipe.

First, make sure that:

	Recipe is installed

	Recipe is up-to-date

Let’s gets started with some simple use cases and examples.

Creating a Shelf

A Shelf is a place to store SQL fragments. In recipe
these are called Ingredients.

Ingredients can contain columns that should be part of the SELECT portion of a query,
filters that are part of a WHERE clause of a query, group_bys that
contribute to a query’s GROUP BY and havings which add HAVING limits
to a query.

You won’t have to construct an Ingredient
with all these parts directly because Recipe contains convenience classes
that help you build the most common SQL fragments. The two most common
Ingredient subclasses are Dimension which provides
both a column and a grouping on that column and
Metric which provides a column aggregation.

Shelf acts like a dictionary. The keys are strings and the
values are Ingredients. The keys are a shortcut name for the
ingredient. Here’s an example.

from recipe import *

Define a database connection
oven = get_oven('sqlite://')
Base = declarative_base(bind=oven.engine)

Define a SQLAlchemy mapping
class Census(Base):
 state = Column('state', String(), primary_key=True)
 sex = Column('sex', String())
 age = Column('age', Integer())
 pop2000 = Column('pop2000', Integer())
 pop2008 = Column('pop2008', Integer())

 __tablename__ = 'census'
 __table_args__ = {'extend_existing': True}

Use that mapping to define a shelf.
shelf = Shelf({
 'state': Dimension(Census.state),
 'age': WtdAvgMetric(Census.age, Census.pop2000),
 'population': Metric(func.sum(Census.pop2000))
})

This is a shelf with two metrics (a weighted average of age, and the sum of
population) and a dimension which lets you group on US State names.

Using the Shelf to build a Recipe

Now that you have the shelf, you can build a Recipe.

r = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state')\
 .metrics('age')\
 .order_by('-age')

print(r.dataset.csv)

This results in

state,age,state_id
Florida,39.08283934000634,Florida
West Virginia,38.555058651148165,West Virginia
Maine,38.10118393261269,Maine
Pennsylvania,38.03856695544053,Pennsylvania
Rhode Island,37.20343773873182,Rhode Island
Connecticut,37.19867141455273,Connecticut
...

Note that a recipe contains data from a single table.`

Defining Shelves and Recipes Using Configuration

Recipes and shelves can be defined using plain ole’ python objects.
In the following example we’ll use YAML. For instance, we can define
the shelf using this yaml config.

state:
 kind: Dimension
 field: state
age:
 kind: WtdAvgMetric
 field: age
 weight: pop2000
population:
 kind: Metric
 field: pop2000

We can load this config by parsing it against any selectable, which
can be a SQLAlchemy mapping, a SQLAlchemy select, or another Recipe.

shelf_yaml = yaml.load('shelf.yaml')
s = Shelf.from_config(shelf_yaml, Census)

We can also define a Recipe with Configuration

metrics:
- age
- population
dimensions:
- state
order_by:
- '-age'

If we load that we get a Recipe

recipe_yaml = yaml.load('shelf.yaml')
recipe = Recipe.from_config(s, recipe_yaml, session=oven.Session())
print(recipe.dataset.csv)

This results in a list of the oldest US states and their populations:

state,age,population,state_id
Florida,39.08283934000634,15976093,Florida
West Virginia,38.555058651148165,1805847,West Virginia
Maine,38.10118393261269,1271694,Maine
Pennsylvania,38.03856695544053,12276157,Pennsylvania
Rhode Island,37.20343773873182,1047200,Rhode Island
Connecticut,37.19867141455273,3403620,Connecticut
...

Adding Features with Extensions

Using extensions, you can add features to Recipe. Here are a few
interesting thing you can do. This example mixes in two extensions.

AutomaticFilters defines filters (where clauses) using configuration.
In this case were are filtering to states that start with the letter C.

CompareRecipe mixes in results from another recipe. In this case,
we are using this comparison recipe to calculate an average age across
all states.

recipe_yaml = yaml.load(r)
recipe = Recipe.from_config(s, recipe_yaml, session=oven.Session(),
 extension_classes=(AutomaticFilters, CompareRecipe))\
 .automatic_filters({'state__like': 'C%'})\
 .compare(Recipe(shelf=s, session=oven.Session()).metrics('age'))
print(recipe.to_sql())
print()
print(recipe.dataset.csv)

The output looks like this

SELECT census.state AS state,
 CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS age,
 sum(census.pop2000) AS population,
 avg(anon_1.age) AS age_compare
FROM census
LEFT OUTER JOIN
(SELECT CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS age
FROM census) AS anon_1 ON 1=1
WHERE census.state LIKE 'C%'
GROUP BY census.state
ORDER BY CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) DESC

state,age,population,age_compare,state_id
Connecticut,37.19867141455273,3403620,35.789568740450036,Connecticut
Colorado,34.5386073584527,4300877,35.789568740450036,Colorado
California,34.17872597484759,33829442,35.789568740450036,California

Now, go check out the API Documentation or look at an Overview of Recipe Concepts.

Overview of Recipe Concepts

Ingredients are reusable fragments of SQL defined in SQLAlchemy. Ingredients
can contribute to a SQL query’s select, group by, where clause or having clause.
For convenience, we define Metric, Dimension, Filter, and Having
classes which support common query patterns.

A Shelf is a container for holding named ingredients.
Shelves can be defined with python code or via configuration.
Shelves defined with configuration can be bound to a SQLAlchemy selectable.

Note

By convention, all the ingredients on a Shelf should reference the same SQLAlchemy selectable.

A Recipe uses a Shelf. The Recipe picks dimensions, metrics, filters,
and havings from the shelf. Dimensions and metrics can also be used to order results.
While the Recipe can refer to items in the shelf by name, you can also supply
raw Ingredient objects. Recipe uses a builder pattern to allow a recipe object to be
modified.

A Recipe generates and runs a SQL query using SQLAlchemy. The query uses an Oven
an abstraction on top of a SQLAlchemy connection. The query results are “enchanted”
which adds additional properties to each result row. This allows ingredients to
format or transform values with python code.

Recipe results can optionally be cached with the recipe_caching support library.

Extensions

Extensions add to Recipe to change how SQL queries get built.

Recipe includes the following built-in extensions.

	AutomaticFilter: Supports a configuration syntax for applying filters.

	BlendRecipe: Allows data from different tables to be combined

	CompareRecipe: Allows a secondary recipe against the same table to be combined.

	Anonymize: Allows result data to be anonymized.

Ingredients

Ingredients are the building block of recipe.

Ingredients can contain columns that are part of the SELECT portion of a query,
filters that are part of a WHERE clause of a query, group_bys that
contribute to a query’s GROUP BY and havings which add HAVING limits
ot a query.

Creating ingredients in python

Ingredients can be created either in python or via configuration. To created
Ingredients in python, use one of the four convenience classes.

	Metric: Create an aggregated calculation using a column. This
value appears only in the SELECT part of the SQL statement.

	Dimension: Create a non-aggregated value using a column. This
value appears in the SELECT and GROUP BY parts of the SQL statement.

	Filter: Create a boolean expression. This value appears in the
WHERE part of the SQL statement. Filters can be created automatically
using the AutomaticFilters extension or by using a Dimension or Metric’sales
build_filter method.

	Having: Create a boolean expression with an aggregated ColumnElement.
This value appears in the HAVING part of the SQL statement.

Metrics and Dimensions are commonly reused in working Recipe code, while filters are
often created temporarily based on data.

Features of ingredients

Let’s explore some capabilities.

Formatters

Formatters are a list of python callables that take a single value. This
let you manipulate the results of an ingredient with python code. If you use
formatters, the original, unmodified value is available as {ingredient}_raw.

shelf = Shelf({
 'state': Dimension(Census.state),
 'age': WtdAvgMetric(Census.age, Census.pop2000),
 'gender': Dimension(Census.gender),
 'population': Metric(func.sum(Census.pop2000), formatters=[
 lambda value: int(round(value, -6) / 1000000)
])
})

recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('gender').metrics('population')

for row in recipe.all():
 print('{} has {} people'.format(row.gender, row.population))
 print('\tThe original value is: {}'.format(row.population_raw))

The results look like

F has 144 million people
 The original value is: 143534804
M has 137 million people
 The original value is: 137392517

Building filters

Ingredient.build_filter

Storing extra attributes in meta

Extra keyword arguments that get passed to ingredient initialization
get stored in the meta object. This can be used to extend the
capabilities of ingredients and add extra features.

d = Dimension(Census.age, icon='cog')
print(d.meta.icon)
>>> 'cog'

Types of Ingredients

List of ingredients

Dimension

Dimensions are groupings that exist in your data. Dimension objects add
the column to the select statement and the group by of the SQL query.

A simple dimension
self.shelf['state'] = Dimension(Census.state)

Adding an id

Dimensions can use separate columns for ids and values. Consider a
table of employees with an employee_id and a full_name. If you had
two employees with the same name you need to be able to distinguish between
them.

Support an id and a label
self.shelf['employee']: Dimension(Employee.full_name,
 id_expression=Employee.id)

The id is accessible as employee_id in each row and their full name is
available as employee.

If you build a filter using this dimension, it will filter against the id.

Adding an ordering

If you want to order a dimension in a custom way, pass a keyword argument
order_by_expression. This code adds an order_by_expression that causes the
values to sort case insensitively.

from sqlalchemy import func

Support an id and a label
self.shelf['employee']: Dimension(Employee.full_name,
 order_by_expression=func.lower(
 Employee.full_name
))

The order_by expression is accessible as employee_order_by in each row and
the full name is available as employee. If the employee dimension is used in a
recipe, the recipe will always be ordered by func.lower(Employee.full_name).

Adding additional groupings

Both id_expression and order_by_expression are special cases of Dimension’s
ability to be passed additional columns can be used for grouping. Any keyword argument
suffixed with _expression adds additional roles to this Dimension. The first
required expression supplies the dimension’s value role. For instance,
you could create a dimension with an id, a latitude and a longitude.

For instance, the following

Dimension(Hospitals.name,
 latitude_expression=Hospitals.lat
 longitude_expression=Hospitals.lng,
 id='hospital')

would add columns named “hospital”, “hospital_latitude”, and
“hospital_longitude” to the recipes results. All three of these expressions
would be used as group bys.

Using lookups

You can use a lookup table to map values in your data to descriptive names. The _id
property of your dimension contains the original value.

Convert M/F into Male/Female
self.shelf['gender']: Dimension(Census.sex, lookup={'M': 'Male',
 'F': 'Female'}, lookup_default='Unknown')

If you use the gender dimension, there will be a gender_id in each row
that will be “M” or “F” and a gender in each row that will be “Male” or
“Female”.

shelf = Shelf({
 'state': Dimension(Census.state),
 'gender_desc': Dimension(Census.gender, lookup={'M': 'Male',
 'F': 'Female'}, lookup_default='Unknown'),
 'age': WtdAvgMetric(Census.age, Census.pop2000),
 'population': Metric(func.sum(Census.pop2000))
})

recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('gender_desc').metrics('population')
print(recipe.to_sql())
print(recipe.dataset.csv)

Lookups inject a formatter in the first position. Because a formatter
is used, recipe creates a gender_desc_raw on the response that
contains the unformatted value then uses the lookup to create the gender_desc
property. All dimensions also generate an {ingredient}_id property.

Here is the query and the results.

SELECT census.gender AS gender_desc_raw,
 sum(census.pop2000) AS population
FROM census
GROUP BY census.gender

gender_desc_raw,population,gender_desc,gender_desc_id
F,143534804,Female,F
M,137392517,Male,M

Metric

Metrics are aggregations performed on your data. Here’s an example
of a few Metrics.

shelf = Shelf({
 'total_population': Metric(func.sum(Census.pop2000)),
 'min_population': Metric(func.min(Census.pop2000)),
 'max_population': Metric(func.max(Census.pop2000))
})
recipe = Recipe(shelf=shelf, session=oven.Session())\
 .metrics('total_population', 'min_population', 'max_population')
print(recipe.to_sql())
print(recipe.dataset.csv)

The results of this recipe are:

SELECT max(census.pop2000) AS max_population,
 min(census.pop2000) AS min_population,
 sum(census.pop2000) AS total_population
FROM census

max_population,min_population,total_population
294583,217,280927321

DivideMetric

Division in SQL introduces the possibility of division by zero. DivideMetric
guards against division by zero while giving you a quick way to divide
one calculation by another.

shelf = Shelf({
 'state': Dimension(Census.state),
 'popgrowth': DivideMetric(func.sum(Census.pop2008-Census.pop2000), func.sum(Census.pop2000)),
})
recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state').metrics('popgrowth')

This creates results like:

SELECT census.state AS state,
 CAST(sum(census.pop2008 - census.pop2000) AS FLOAT) /
 (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS popgrowth
FROM census
GROUP BY census.state

state,popgrowth,state_id
Alabama,0.04749469366071285,Alabama
Alaska,0.09194726152996757,Alaska
Arizona,0.2598860676785905,Arizona
Arkansas,0.06585681816651036,Arkansas
California,0.0821639328251409,California
Colorado,0.14231283526592364,Colorado
...

The denominator has a tiny value added to it to prevent division by zero.

WtdAvgMetric

WtdAvgMetric generates a weighted average of a number using a weighting.

Warning

WtdAvgMetric takes two ColumnElements as arguments. The first is the value
and the second is the weighting. Unlike other Metrics, these are not aggregated.

Here’s an example.

shelf = Shelf({
 'state': Dimension(Census.state),
 'avgage': WtdAvgMetric(Census.age, Census.pop2000),
})
recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state').metrics('avgage')

print(recipe.to_sql())
print(recipe.dataset.csv)

This generates results that look like this:

SELECT census.state AS state,
 CAST(sum(census.age * census.pop2000) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS avgage
FROM census
GROUP BY census.state

state,avgage,state_id
Alabama,36.27787892421841,Alabama
Alaska,31.947384766048568,Alaska
Arizona,35.37065466080318,Arizona
Arkansas,36.63745110262778,Arkansas
California,34.17872597484759,California
...

Note: WtdAvgMetric uses safe division from DivideMetric.

Filter

Filter objects add a condition to the where clause of your SQL query.
Filter objects can be added to a Shelf.

shelf = Shelf({
 'state': Dimension(Census.state),
 'population': Metric(func.sum(Census.pop2000)),
 'teens': Filter(Census.age.between(13,19)),
})
recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state')\
 .metrics('population')\
 .filters('teens')
print(recipe.to_sql())
print(recipe.dataset.csv)

This results in output like:

SELECT census.state AS state,
 sum(census.pop2000) AS population
FROM census
WHERE census.age BETWEEN 13 AND 19
GROUP BY census.state

state,population,state_id
Alabama,451765,Alabama
Alaska,71655,Alaska
Arizona,516270,Arizona

Different ways of generating Filters

Recipe has several ways of filtering recipes.

	Filter objects can be added to the shelf. They can be added to the
recipe by name from a shelf. This is best when
you have a filter that you want to use in many place.

shelf = Shelf({
 'age': Dimension(Census.age),
 'state': Dimension(Census.state),
 'population': Metric(func.sum(Census.pop2000)),
 'teens': Filter(Census.age.between(13,19)),
})
...
recipe = recipe.filters('teens')

	Filter objects can be created dynamically and added to the recipe. This is
best if the filtering needs to change dynamically.

recipe = recipe.filters(Filter(Census.age.between(13,19))

	Ingredient.build_filter can be used to build filters that refer
to the ingredient’s column.

age_filter = shelf['age'].build_filter([13,19], 'between')
recipe = recipe.filters(age_filter)

This is best when you want to reuse a column definition defined in
an ingredient.

	AutomaticFilters: The AutomaticFilters extension adds filtering
syntax directly to recipe.

recipe = recipe.automatic_filters({
 'age__between': [13,19]
})

This is best when you want to add many filters consistently.
AutomaticFilters uses Ingredient.build_filter behind the scenes.

Having

Having objects are binary expressions with an aggregated column value.
One easy way to generate Having objects is to build_filter using
a Metric.

shelf = Shelf({
 'age': Dimension(Census.age),
 'avgage': WtdAvgMetric(Census.age, Census.pop2000),
 'state': Dimension(Census.state),
 'population': Metric(func.sum(Census.pop2000)),
})
Find states with a population greater than 15 million
big_states = shelf['population'].build_filter(15000000, operator='gt')
recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state')\
 .metrics('population')\
 .order_by('-population')\
 .filters(big_states)

print(recipe.to_sql())
print(recipe.dataset.csv)

This generates the following results.

SELECT census.state AS state,
 sum(census.pop2000) AS population
FROM census
GROUP BY census.state
HAVING sum(census.pop2000) > 15000000
ORDER BY sum(census.pop2000) DESC

state,population,state_id
California,33829442,California
Texas,20830810,Texas
New York,18978668,New York
Florida,15976093,Florida

Shelves

A shelf is a container for holding Ingredients.

Shelves act like dictionaries with keys that are strings and values
that are Ingredients.

Adding ingredients to a Shelf sets the ingredient id to the key
used in the Shelf.

Defining Shelves from configuration

Shelves are defined as dictionaries containing keys and ingredient.
All the examples below use YAML.

Defining Shelves

Shelves are defined in configuration as dictionaries with keys and values that
are Ingredient configuration definitions. A simple example looks like this.

total_population:
 kind: Metric
 field: pop2000
state:
 kind: Dimension
 field: state

See examples for more Shelf examples.

Defining Ingredients

Ingredients are defined using fields (which may contain conditions). Those conditions
may reference more fields in turn and so forth.

Metric

Metrics will always apply a default aggregation of ‘sum’ to any fields used.

kind: Metric
field: {field}
divide_by: {field} (optional)

divide_by is an optional denominator that field will be divided by safely.

Dimension

Metrics will always apply a default aggregation of ‘sum’ to their field.

kind: Dimension
field: {field}
{role}_field: {field} (optional)
buckets: A list of labeled conditions (optional)
buckets_default_label: string (optional)
quickselects: A list of labeled conditions (optional)

Adding id and other roles to Dimension

Dimensions can be defined with extra fields. The prefix before _field
is the field’s role. The role will be suffixed to each value in the
recipe rows. Let’s look at an example.

hospital:
 field: hospital_name
 id_field: hospital_id
 latitude_field: hospital_lat
 longitude_field: hospital_lng

Each result row will include

	hospital

	hospital_id The field defined as id_field

	hospital_latitude The field defined as latitude_field

	hospital_longitude The field defined as longitude_field

Defining buckets

Buckets let you group continuous values (like salaries or ages). Here’s
an example:

groups:
 kind: Dimension
 field: age
 buckets:
 - label: 'northeasterners'
 field: state
 in: ['Vermont', 'New Hampshire']
 - label: 'babies'
 lt: 2
 - label: 'children'
 lt: 13
 - label: 'teens'
 lt: 20
 buckets_default_label: 'oldsters'

The conditions are evaluated in order. buckets_default_label is used for any
values that didn’t match any condition.

For convenience, conditions defined in buckets will use the field from the Dimension
unless a different field is defined in the condition. In the example above, the first
bucket uses field: state explicitly while all the other conditions use field: age
from the Dimension.

If you use order_by a bucket dimension, the order will be the order in which the
buckets were defined.

Adding quickselects to a Dimension

quickselects are a way of associating conditions with a dimension.

region:
 kind: Dimension
 field: sales_region
total_sales:
 kind: Metric
 field: sales_dollars
date:
 kind: Dimension
 field: sales_date
 quickselects:
 - label: 'Last 90 days'
 between:
 - 90 days ago
 - tomorrow
 - label: 'Last 180 days'
 between:
 - 180 days ago
 - tomorrow

These conditions can then be accessed through Ingredient.build_filter.
The AutomaticFilters extension is an easy way to use this.

recipe = Recipe(session=oven.Session(), extension_classes=[AutomaticFilters]). \
 .dimensions('region') \
 .metrics('total_sales') \
 .automatic_filters({
 'date__quickselect': 'Last 90 days'
 })

Defining Fields

Fields can be defined with a short string syntax or a dictionary syntax.
The string syntax always is normalized into the dictionary syntax.

field:
 value: '{column reference}'
 aggregation: '{aggregation (optional)}'
 operators: {list of operators}
 as: {optional type to coerce into}
 default: {default value, optional}

or

field: '{string field definition}'
This may include field references that look like
@{ingredient name from the shelf}.

Defining Fields with Dicts

Dictionaries provide access to all options when defining a
field.

dictionary field options

	Key

	Required

	Description

	value

	required

	string

What column to use.

	aggregation

	optional

	string

(default is ‘sum’ for Metric and ‘none’ for Dimension)

What aggregation to use, if any. Possible aggregations are:

	‘sum’

	‘min’

	‘max’

	‘avg’

	‘count’

	‘count_distinct’

	‘month’ (round to the nearest month for dates)

	‘week’ (round to the nearest week for dates)

	‘year’ (round to the nearest year for dates)

	‘quarter’ (round to the nearest quarter for dates)

	‘age’ (calculate age based on a date and the current date)

	‘none’ (perform no aggregation)

	‘median’ (calculate the median value, note: this aggregation is not available
on all databases).

	‘percentile[1,5,10,25,50,75,90,95,99]’ (calculate the nth percentile value
where higher values correspond to higher percentiles, note: this aggregation
is not available on all databases).

	condition

	optional

	A condition

Condition will limit what rows of data are aggregated for a field.

	operators

	optional

	A list of operator

Operators are fields combined with a math operator to the base field.

	default

	optional

	An integer, string, float, or boolean value (optional)

A value to use if the column is NULL.

Warning

The following two fields are for internal use.

internal dictionary field options

	Key

	Required

	Description

	ref

	optional

	string

Replace this field with the field defined in
the specified key in the shelf.

	_use_raw_value

	optional

	boolean

Don’t evaluate value as a column, treat
it as a constant in the SQL expression.

Defining Fields with Strings

Fields can be defined using strings. When using
strings, words are treated as column references. If the
words are prefixed with an ‘@’ (like @sales), the field of the ingredient
named sales in the shelf will be injected.

Aggregations can be called like functions to apply that aggregation
to a column.

string field examples

	Field string

	Description

	revenue - expenses

	The sum of column revenue minus the sum of column expenses.

field: revenue - expenses

is the same as

field:
 value: revenue
 aggregation: sum # this may be omitted because 'sum'
 # is the default aggregation for Metrics
 operators:
 - operator: '-'
 field:
 value: expenses
 aggregation: sum

	@sales / @student_count

	Find the field definition of the field named ‘sales’ in the shelf.

Divide it by the field definition of the field named ‘student_count’.

	count_distinct(student_id)

	Count the distinct values of column student_id.

field: count_distinct(student_id)

is the same as

field:
 value: student_id
 aggregation: count_distinct

Defining Field Operators

Operators lets you perform math with fields.

operator options

	Key

	Required

	Description

	operator

	required

	string

One of ‘+’, ‘-’, ‘*’, ‘/’

	field

	required

	A field definition (either a string or a dictionary)

For instance, operators can be used like this:

profit - taxes - interest
field:
 value: profit
 operators:
 - operator: '-'
 field: taxes
 - operator: '-'
 field: interest

Defining Conditions

Conditions can include a field and operator or a list of
conditions and-ed or or-ed together.

field: {field definition}
label: string (an optional string label)
{operator}: {value} or {list of values}

or

or: # a list of conditions
- {condition1}
- {condition2}
...
- {conditionN}

or

and: # a list of conditions
- {condition1}
- {condition2}
...
- {conditionN}

or

a condition reference @{ingredient name from the shelf}.

Conditions consist of a field and exactly one operator.

condition options

	Condition

	Value is…

	Description

	gt

	A string, int, or float.

	Find values that are greater than the value

For example:

Sales dollars are greater than 100.
condition:
 field: sales_dollars
 gt: 100

	gte (or ge)

	A string, int, or float.

	Find values that are greater than or equal to the value

	lt

	A string, int, or float.

	Find values that are less than the value

	lte (or le)

	A string, int, or float.

	Find values that are less than or equal to the value

	eq

	A string, int, or float.

	Find values that are equal to the value

	ne

	A string, int, or float.

	Find values that are not equal to the value

	like

	A string

	Find values that match the SQL LIKE expression

For example:

States that start with the capital letter C
condition:
 field: state
 like: 'C%'

	ilike

	A string

	Find values that match the SQL ILIKE (case insensitive like) expression.

	between

	A list of two values

	Find values that are between the two values.

	in

	A list of values

	Find values that are in the list of values

	notin

	A list of values

	Find values that are not in the list of values

ands and ors in conditions

Conditions can and and or a list of conditions together.

Here’s an example:

Find states that start with 'C' and end with 'a'
Note the conditions in the list don't have to
use the same field.
condition:
 and:
 - field: state
 like: 'C%'
 - field: state
 like: '%a'

Date conditions

If the field is a date or datetime, absolute and relative dates
can be defined in values using string syntax. Recipe uses the
Dateparser [https://dateparser.readthedocs.io/en/latest/] library.

Here’s an example.

Find sales that occured within the last 90 days.
condition:
 field: sales_date
 between:
 - '90 days ago'
 - 'tomorrow'

Labeled conditions

Conditions may optionally be labeled by adding a label property.

quickselects are a feature of Dimension that are defined with a list
of labeled conditions.

Examples

A simple shelf with conditions

This shelf is basic.

teens:
 kind: Metric
 field:
 value: pop2000
 condition:
 field: age
 between: [13,19]
state:
 kind: Dimension
 field: state

Using this shelf in a recipe.

recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state')\
 .metrics('teens')
print(recipe.to_sql())
print(recipe.dataset.csv)

The results look like:

SELECT census.state AS state,
 sum(CASE
 WHEN (census.age BETWEEN 13 AND 19) THEN census.pop2000
 END) AS teens
FROM census
GROUP BY census.state

state,teens,state_id
Alabama,451765,Alabama
Alaska,71655,Alaska
Arizona,516270,Arizona
Arkansas,276069,Arkansas
...

Metrics referencing other metric definitions

The following shelf has a Metric pct_teens that divides one previously defined Metric
teens by another total_pop.

teens:
 kind: Metric
 field:
 value: pop2000
 condition:
 field: age
 between: [13,19]
total_pop:
 kind: Metric
 field: pop2000
pct_teens:
 field: '@teens'
 divide_by: '@total_pop'
state:
 kind: Dimension
 field: state

Using this shelf in a recipe.

recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('state')\
 .metrics('pct_teens')
print(recipe.to_sql())
print(recipe.dataset.csv)

Here’s the results. Note that recipe performs safe division.

SELECT census.state AS state,
 CAST(sum(CASE
 WHEN (census.age BETWEEN 13 AND 19) THEN census.pop2000
 END) AS FLOAT) / (coalesce(CAST(sum(census.pop2000) AS FLOAT), 0.0) + 1e-09) AS pct_teens
FROM census
GROUP BY census.state

state,pct_teens,state_id
Alabama,0.10178190714599038,Alabama
Alaska,0.11773975168751254,Alaska
Arizona,0.10036487658951877,Arizona
Arkansas,0.10330245760980436,Arkansas
...

Dimensions containing buckets

Dimensions may be created by bucketing a field.

total_pop:
 kind: Metric
 field: pop2000
age_buckets:
 kind: Dimension
 field: age
 buckets:
 - label: 'babies'
 lt: 2
 - label: 'children'
 lt: 13
 - label: 'teens'
 lt: 20
 buckets_default_label: 'oldsters'
mixed_buckets:
 kind: Dimension
 field: age
 buckets:
 - label: 'northeasterners'
 in: ['Vermont', 'New Hampshire']
 field: state
 - label: 'babies'
 lt: 2
 - label: 'children'
 lt: 13
 - label: 'teens'
 lt: 20
 buckets_default_label: 'oldsters'

Using this shelf in a recipe.

recipe = Recipe(shelf=shelf, session=oven.Session())\
 .dimensions('mixed_buckets')\
 .metrics('total_pop')\
 .order_by('mixed_buckets')
print(recipe.to_sql())
print(recipe.dataset.csv)

Here’s the results. Note this recipe orders by mixed_buckets. The buckets are
ordered in the order they are defined.

SELECT CASE
 WHEN (census.state IN ('Vermont',
 'New Hampshire')) THEN 'northeasterners'
 WHEN (census.age < 2) THEN 'babies'
 WHEN (census.age < 13) THEN 'children'
 WHEN (census.age < 20) THEN 'teens'
 ELSE 'oldsters'
 END AS mixed_buckets,
 sum(census.pop2000) AS total_pop
FROM census
GROUP BY CASE
 WHEN (census.state IN ('Vermont',
 'New Hampshire')) THEN 'northeasterners'
 WHEN (census.age < 2) THEN 'babies'
 WHEN (census.age < 13) THEN 'children'
 WHEN (census.age < 20) THEN 'teens'
 ELSE 'oldsters'
 END
ORDER BY CASE
 WHEN (census.state IN ('Vermont',
 'New Hampshire')) THEN 0
 WHEN (census.age < 2) THEN 1
 WHEN (census.age < 13) THEN 2
 WHEN (census.age < 20) THEN 3
 ELSE 9999
 END

mixed_buckets,total_pop,mixed_buckets_id
northeasterners,1848787,northeasterners
babies,7613225,babies
children,44267889,children
teens,28041679,teens
oldsters,199155741,oldsters

Using Shelves from configuration

When are Shelves from configuration bound to columns?

Shelf configuration can be bound at any time to a selectable. This can
be any one of:

	A SQLAlchemy Mapping

	A SQLAlchemy subselect

	A Recipe

Binding a shelf to a Mapping

Binding shelves to Mappings is the most common usage of shelves.
It connects the shelf config to database table columns.

Let’s look at an example of binding a shelf to a Mapping.

Create simple census shelf
Average age by state
Get min/max average ages

The results look like this:

dfs

Binding a shelf to a SQLAlchemy subselect

Binding shelves to Mappings is the most common usage of shelves.
It connects the shelf config to database table columns.

Let’s look at an example of binding a shelf to a Mapping.

Create a subselect that joins the table to additional data

The results look like this:

dfs

Binding a shelf to a Recipe

Using Extensions

Extensions build on the core behavior or recipe to let you perform

Built-in extensions

	AutomaticFilters: Simple filtering

	CompareRecipe: Generating comparison values

	BlendRecipe: Combining recipes from different tables

	Anonymize: Realistic random data

	Paginate and PaginateInline: Returning data in pages

AutomaticFilters: Simple filtering

The AutomaticFilters extension provides a simpler approach to building filters
using Ingredient.build_filter.

The AutomaticFilters extension.

CompareRecipe: Generating comparison values

The CompareRecipe extension lets you generate different Recipes
againt the same table to generate comparison values.

BlendRecipe: Combining recipes from different tables

The BlendRecipe extension lets you combine data from multiple recipes.

Anonymize: Realistic random data

The Anonymize extension lets generate anonymous data that resembles
real data.

Paginate and PaginateInline: Returning data in pages

The Paginate and PaginateInline extensions lets recipes be paginated, searched and sorted.

Settings

Ovens

Ovens are used to bake (execute) the queries generated by recipes. A standard
oven is included in a recipe library, which provides connectivity to any
database supported by SQLAlchemy. Remember, you’ll need to have the required
database driver installed. You can learn more in the SQLAlchemy
documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

Initializing an Oven

To initialize an oven, you pass it the connection string for your database to
the get_oven() function. You’ll get back an oven that has a ready to use
engine and session. For example, to connect to an in-memory sqlite database
and use with a recipe.

from recipe import get_oven

oven = get_oven('sqlite://')
recipe = Recipe(session=oven.Session())

If you need to access the SQLAlchemy engine for any reason, it is available
via the engine attribute.

Oven Drivers

Developers can also build custom oven drivers that provide advanced features.
One example of that is the recipe_caching oven. You can pip install the
recipe_caching python package, and you’ll have access to an oven that caches
the results of every query. If you want to use a custom oven driver, you pass
the drivers name to the name keyword argument as shown here:

from recipe import get_oven

oven = get_oven('sqlite://', name='caching')

Note

Other ovens may require additional configuration or settings. So
make sure to review their documentation.

You can learn more about creating your own drivers in the Custom Oven Drivers
section.

Hooks

Recipes can call optional hooks to modify the recipe as it progresses
towards execution. This is done by add the desired hooks names to the
dynamic_extensions property of the recipe. Currently, no hooks are
implemented in the base recipe library. However, much like ovens, they
can be loaded via third party libraries.

For example, if we installed the recipe_caching library, we could
add it’s extension as shown here:

Recipe(shelf=shelf, session=oven.Session(), dynamic_extensions=['caching'])

You can learn more about creating your own in the Dynamic Extensions
section.

API

This part of the documentation covers all the interfaces of Recipe.

Recipe

Shelf

Ingredients

Extensions

Exceptions

Now, go start some Recipe Development.

Development

Recipe is under active development, and contributors are welcome.

If you have a feature request, suggestion, or bug report, please open a new
issue on GitHub [http://github.com/juiceinc/recipe/]. To submit patches, please send a pull request on GitHub [http://github.com/juiceinc/recipe/].

Conventions

Recipe code wraps at 79 characters and passes flake8. Strings should single
quoted unless double quoting leads to less escaping. Add tests to achieve
100% code coverage.

Source Control

The project is hosted on at https://github.com/juiceinc/recipe

The repository is publicly accessible. To check it out, run:

git clone git://github.com/juiceinc/recipe.git

Git Branch Structure

	develop
	The “next release” branch. Likely unstable.

	master
	Current production release (0.37.2) on PyPi.

Each release is tagged.

When submitting patches, please place your feature/change in its own branch
prior to opening a pull request on GitHub [http://github.com/juiceinc/recipe/].

Adding New Extensions

Recipe welcomes new extensions.

Extensions subclass RecipeExtension and plug into the base recipe’s .query()
method which builds a SQLAlchemy query. Extensions can either modify the base
recipe like these do.

	AutomaticFilters

	Anonymize

Or extensions can merge one or more recipes into the base recipe. Extensions
that require another recipe should have a classname that ends with Recipe.

	CompareRecipe

	BlendRecipe

When adding an extension, do the following.

	Add extension to src/extensions.py

	Add tests to tests/test_extensions.py, cover 100% of extension function
and test that the extension doesn’t interfere with other extensions

	Make sure your extension code passes flake8

	Add extension description to docs/extensions/

	Submit a PR!

Adding New Ingredients

Recipe welcomes new ingredients, particularly metrics and dimensions that
cover common patterns of data aggregation.

Subclass the appropriate ingredient and don’t duplicate something that a
superclass does. For instance WtdAvgMetric is a subclass of
DivideMetric that generates it’s expressions differently.

Extra functionality can be added by using Ingredient.meta in structured ways.

A checklist of adding an extension.

	Add extension to src/ingredients.py

	Add tests to tests/test_ingredients.py, cover 100% of ingredient
parameters.

	Make sure your ingredient passes flake8

	Submit a PR!

Testing Recipe

Testing is crucial to confident development and stability. This stable
project is used in production by many companies and developers, so it is
important to be certain that every version released is fully operational.
When developing a new feature for Recipe, be sure to write proper tests for it
as well.

When developing a feature for Recipe, the easiest way to test your changes for
potential issues is to simply run the test suite directly.

$ make tests

This will run tests under pytest and show code coverage data.

Continuous Integration

Every commit made to the develop branch is automatically tested and
inspected upon receipt with `Travis CI`_. If you have access to the main
repository and broke the build, you will receive an email accordingly.

Anyone may view the build status and history at any time.

https://travis-ci.org/juiceinc/tablib

	Additional reports will also be included here in the future, including PEP 8 [https://peps.python.org/pep-0008/]
	checks and stress reports for extremely large datasets.

Building the Docs

Documentation in reStructured Text [http://docutils.sourceforge.net/rst.html] and powered by Sphinx [http://sphinx.pocoo.org].

	The Docs live in recipe/docs. In order to build them, you will first need
	to install Sphinx.

$ pip install sphinx

To build an HTML version of the docs, simply run the following from the
docs directory:

$ make html

Your docs/_build/html directory will then contain the fully build
documentation, ready for publishing. You can also generate the documentation
in tons of other formats.

If you want to learn more, check out the API Documentation.

Custom Oven Drivers

It’s possible to implement your own custom oven drivers to get a desired
behavior for the engine or the session. An abstract base class is provided
for you to inherit from called OvenBase. You need to implement an
init_engine that returns a SQLAlchemy engine, and an init_session
that returns a SQLAlchemy sessionmaker. The default __init__ method
sets the output of both of these to to the oven’s engine and Session
properties respectively.

Note

Remember to use recipe’s built in settings to handle any
configuration options/settings you made need for your
driver.

OvenBase

Dynamic Extensions

Recipes can to load dynamic plugins and extensions as hooks. The hooks
are expected to accept a recipe_parts dict or object and have an
execute method that returns a new recipe_parts dict or object. The
plugins must be in the appropiate namespace depending on where they get
called. The recipe.hooks.modify_query namespace is one of the
namespaces that is available. You can see the recipe_caching
library for a concrete implementation.

Note

Remember to use recipe’s built in settings to handle any
configuration options/settings you made need for your
extension.

DynamicExtensionBase

Changelog

v0.37.2 (2023-10-05)

	Require ingredient ids to be strings that don’t start with underscore

v0.37.1 (2023-09-19)

	Handle NullType columns

v0.37.0 (2023-09-18)

	Update sqlalchemy to 1.4

	Drop support for SummarizeOver

v0.36.7 (2023-09-19)

	Handle NullType columns

v0.36.6 (2023-08-24)

	Properly quote order_by columns when using labels strategy

v0.36.5 (2023-08-17)

	Get engine consistently

v0.36.4 (2023-08-17)

	Ensure filters appear in sorted order

v0.36.3 (2023-08-17)

	Fix quoting of order_by columns when using labels strategy

v0.36.2 (2023-08-14)

	Improve quoting of order_by columns when using labels strategy

v0.36.1 (2023-08-01)

	Add lastday(date, datepart) for bigquery/snowflake

v0.36.0 (2023-07-18)

	Add a strict flag to automatic_filters with default true

	Add extract(datepart, date) and add an optional datepart to datediff

v0.35.5 (2023-06-12)

	Fix count(*) in PaginateCountOver

v0.35.4 (2023-06-12)

	Support expressions for database column names that contain spaces

v0.35.3 (2023-06-12)

	Fix default group by strategy for dimensions in snowflake and mssql databases

v0.35.2 (2023-06-01)

	Allow snowflake timestamps in expressions

v0.35.1 (2023-04-20)

	Allow expression builder to be passed to Shelf.from_config constructor.

v0.35.0 (2023-04-09)

	Add PaginateCountOver, a simpler pagination counter

v0.34.1 (2023-04-06)

	Add datediff function, improve aggregation

v0.34.0 (2023-04-06)

	Support a dictionary of literal or aggregate constants when defining shelves from config.

v0.33.0 (2023-03-17)

	Allow shelves to be built with more than one table reference.

v0.32.1 (2023-01-26)

	Allow automatic filters to be applied more than once to a recipe

	Ensure datatypes are always str

v0.32.0 (2023-01-19)

	cache parsed ingredient fields and the result of their validation in the context of a specific grammar

v0.31.6 (2022-12-07)

	Add a utility function make_schema

v0.31.5 (2022-06-13)

	Fix timestamp conversion functions in bigquery

v0.31.4 (2022-04-04)

	Support and operator in complex filters

v0.31.3 (2022-04-04)

	no changes

v0.31.2 (2022-03-25)

	Disallow literal-only expressions

	Allow count for boolean expressions

v0.31.1 (2022-03-24)

	Add caching for total_count

v0.31.0 (2022-03-23)

	Allow nested operators and values within an in operator

	
	“notin” filter operator is refactored to not use separate code from in. Instead we generate the in code and then
	wrap it in _not. This will change the sql generated when automatic filtering but the results will be the same.

	Code cleanups and refactorings

v0.30.1 (2022-03-22)

	Fix an error in ordering with mixed case columns/labels when using snowflake

	Update requirements to use lark

	Update requirements for dateparser past a broken version (See issue https://github.com/scrapinghub/dateparser/issues/1045)

	Don’t create expression grammar for columns with invalid names

v0.30.0 (2022-02-15)

	Breaking chagne: removed support for v1 ingredient configuration.

	Refactor tests to use unittests

	Add type annotations

	Add substr function

v0.29.3 (2021-12-07)

	Add support for like and ilike in parsed expressions

v0.29.1 (2021-12-03)

	Fix automatic filters when dimension ids contain double underscores

v0.29.0 (2021-11-17)

	Improve mssql support

v0.28.1 (2021-10-28)

	Fix for splitting operators in automatic filters

v0.28.0 (2021-10-15)

	Add directives that will convert dates and datetimes to the nearest year/month/day

v0.27.1 (2021-09-14))

	Allow compound selection to take a list of json encoded strings

v0.27.0 (2021-08-26)

	Update requirements

	Drop support for python3.6

	Save metric and dimension keys without deduping

v0.26.1 (2021-07-29)

	Fix aggregation for PaginateInline extension

v0.26.0 (2021-07-15)

	Add PaginateInline extension

v0.25.1 (2021-06-15)

	Fix datatype tracking in some cases

v0.25.0 (2021-06-07)

	Add to date syntax

	Avoid installing a top-level tests package in setup.py

v0.24.1 (2021-06-10)

	Fix datatype tracking in some cases

v0.24.0 (2021-05-14)

	Track the datatype used by ingredient columns

	Require parsed metrics to generate a number

v0.23.4 (2021-05-03)

	Improve automatic filtering with uncompilable ingredients

v0.23.3 (2021-04-29)

	Fix column_type for timestamps

v0.23.2 (2021-02-09)

	Apply a default ordering when paginating

v0.23.1 (2021-02-08)

	Fix sql generation of timestamp truncated columns in bigquery

v0.23.0 (2021-02-01)

	Improve the lark parser to validate explicitly using the database columns and
column types available in the data.

	Run a validation phase on a parsed tree to make sure that arguments are correct types.

	Return descriptive errors

	Improve cross database support

v0.22.1 (2020-12-23)

	Like and ilike filter generation is more lenient

v0.22.0 (2020-12-10)

	Drop python2 support

v0.21.0 (2020-10-20)

	Add [syntax] to disambiguate database columns in parsed fields

	Save original config to ingredient when generating parsed fields.

v0.20.1 (2020-10-07)

	Fix issue with parsing >= and <=

v0.20.0 (2020-10-02)

	Update total_count to use caching

	Fix datatime auto conversions

0.19.1 (2020-09-10)

	Drop python2.7 testing support (Python2.7 support will be dropped in 0.20)

	Improve type identification in Ingredient.build_filter

0.19.0 (2020-09-04)

	Support and documentation for compound selection in automatic filters

	Support for different sqlalchemy generation when using parsed fields

	Add support for date conversions and percentiles in bigquery.

	Ingredient.build_filters now returns SQLAlchemy BinaryExpression rather than Filter objects.

0.18.1 (2020-08-07)

	Fix a bug in filter binning

	Happy birthday, Zoe!

0.18.0 (2020-07-31)

	Add automatic filter binning for redshift to reduce required query compilations

	Add parsed field converters to perform casting and date truncation.

0.17.2 (2020-07-21)

	Fix Paginate search to use value roles

0.17.1 (2020-07-09)

	Fix parsed syntax for field IS NULL

0.17.0 (2020-06-26)

	Set bucket default label to “Not found”

	Use sureberus to validate lookup is a dictionary if present in Dimension config

	Fix to ensure pagination page is 1 even if there is no data

	On shelf construction, create InvalidIngredient for ingredients that fail construction

0.16.0 (2020-06-19)

	Ignore order_by on a recipe if the ingredient has not been added to the dimensions or metrics.

	Allows case insensitivity in “kind:” and support “kind: Measure” as an alternative to “kind: Metric”

	Fix like/ilike and pagination_q filtering against dimensions that have a non-string ID.

	Fix parsed sql generation for AND and OR

	Fix parsed sql generation for division when one of the terms is a constant (like sum(people) / 100.0)

	Adds IS NULL as a boolean expression

	Adds “Intelligent date” calculations to allow more useful date calculations relative to current date

0.15.0 (2020-05-08)

	Ignore order_by if ingredients have not been added

	Support measure as a synonym for metric and be lenient about capitalization
in shelf config

0.14.0 (2020-03-06)

	Support graceful ingredient failures when ingredients can not be constructed from config.

0.13.1 (2020-02-11)

	Fix a pg8000 issue

0.13.0 (2020-01-28)

	Extend grouping strategies so recipes can also order by column labels

	Create a new shelf configuration that uses lark to parse text into SQLAlchemy.

0.12.0 (2019-11-25)

	remove flapjack_stack and pyhash dependencies

	Add percentile aggregations to metrics from config.

	Use more accurate fetched_from_cache caching query attribute

	Add grouping strategies so recipes can group by column labels

0.11.0 (2019-11-07)

	Add Paginate extension

	Fix deterministic Anonymization in python3

	CI improvements

0.10.0 (2019-08-07)

	Support multiple quickselects which are ORed together

0.9.0 (2019-08-07)

	Replace quickfilter with quickselect

	Improve and publish docs on at recipe.readthedocs.io

	Happy birthday, Zoe!

0.8.0 (2019-07-08)

	Add cache control options.

0.7.0 (2019-06-24)

	Support date ranges in configuration defined ingredients

	Add like, ilike, between in ingredients defined from config

	Better handling in automatic filters when Nones appear in lists

	Remove dirty flag

	Ingredients defined from config support safe division by default

	[ISSUE-37] Allow Dimension defined from config to be defined using buckets

0.6.2 (2019-06-11)

0.1.0 (2017-02-05)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 recipe	

Index

 M
 | P
 | R

M

 	
 	
 module

 	recipe, [1], [2], [3], [4], [5], [6]

P

 	
 	
 Python Enhancement Proposals

 	PEP 8

R

 	
 	
 recipe

 	module, [1], [2], [3], [4], [5], [6]

Authors

	Chris Gemignani https://github.com/chrisgemignani

	Jason Myers https://github.com/jasonamyers

	Jingwei https://github.com/mulog1990

	Radix https://github.com/radix

	Aida https://github.com/aidamartinezp

Overview

Legos for SQL

Recipe is an MIT licensed cross-database querying library, written
in Python. It allows you to reuse SQL fragments to answer data questions
consistently. Extension classes allow you to support data anonymization,
automatic generation of where clauses, user permissioning to data, subselects,
and response formatting.

Installation

pip install recipe

Documentation

https://recipe.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Settings

Recipe now has a SETTINGS object that can be use to store and modify any
configuration options or setting needed for use within the recipe library.

To access the SETTINGS object import it from recipe.

from recipe import SETTINGS

Recipe settings are

	POOL_SIZE
	Used to set the pool_size kwarg property in a SQLAlchemy connection

	POOL_RECYCLE
	Used to set the pool_recycle kwarg property in a SQLAlchemy connection

The pluggable recipe_caching extension uses the following setting.

	CACHE_REGIONS
	Used to set a dictionary of dogpile cache regions.

Reference

	recipe

recipe

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Recipe: A DRY framework for querying data

 		
 Introduction

 		
 Recipe License

 		
 Pythons Supported

 		
 Installation

 		
 Installing Recipe

 		
 Distribute & Pip

 		
 Download the Source

 		
 Staying Updated

 		
 Getting Started

 		
 Creating a Shelf

 		
 Using the Shelf to build a Recipe

 		
 Defining Shelves and Recipes Using Configuration

 		
 Adding Features with Extensions

 		
 Overview of Recipe Concepts

 		
 Extensions

 		
 Ingredients

 		
 Creating ingredients in python

 		
 Features of ingredients

 		
 Types of Ingredients

 		
 Dimension

 		
 Metric

 		
 DivideMetric

 		
 WtdAvgMetric

 		
 Filter

 		
 Having

 		
 Shelves

 		
 Defining Shelves from configuration

 		
 Defining Shelves

 		
 Defining Ingredients

 		
 Metric

 		
 Dimension

 		
 Defining Fields

 		
 Defining Fields with Dicts

 		
 Defining Fields with Strings

 		
 Defining Field Operators

 		
 Defining Conditions

 		
 ands and ors in conditions

 		
 Date conditions

 		
 Labeled conditions

 		
 Examples

 		
 A simple shelf with conditions

 		
 Metrics referencing other metric definitions

 		
 Dimensions containing buckets

 		
 Using Shelves from configuration

 		
 When are Shelves from configuration bound to columns?

 		
 Binding a shelf to a Mapping

 		
 Binding a shelf to a SQLAlchemy subselect

 		
 Binding a shelf to a Recipe

 		
 Using Extensions

 		
 AutomaticFilters: Simple filtering

 		
 CompareRecipe: Generating comparison values

 		
 BlendRecipe: Combining recipes from different tables

 		
 Anonymize: Realistic random data

 		
 Paginate and PaginateInline: Returning data in pages

 		
 Settings

 		
 Ovens

 		
 Initializing an Oven

 		
 Oven Drivers

 		
 Hooks

 		
 API

 		
 Recipe

 		
 Shelf

 		
 Ingredients

 		
 Extensions

 		
 Exceptions

 		
 Development

 		
 Conventions

 		
 Source Control

 		
 Git Branch Structure

 		
 Adding New Extensions

 		
 Adding New Ingredients

 		
 Testing Recipe

 		
 Continuous Integration

 		
 Building the Docs

 		
 Custom Oven Drivers

 		
 OvenBase

 		
 Dynamic Extensions

 		
 DynamicExtensionBase

 		
 Changelog

 		
 v0.37.2 (2023-10-05)

 		
 v0.37.1 (2023-09-19)

 		
 v0.37.0 (2023-09-18)

 		
 v0.36.7 (2023-09-19)

 		
 v0.36.6 (2023-08-24)

 		
 v0.36.5 (2023-08-17)

 		
 v0.36.4 (2023-08-17)

 		
 v0.36.3 (2023-08-17)

 		
 v0.36.2 (2023-08-14)

 		
 v0.36.1 (2023-08-01)

 		
 v0.36.0 (2023-07-18)

 		
 v0.35.5 (2023-06-12)

 		
 v0.35.4 (2023-06-12)

 		
 v0.35.3 (2023-06-12)

 		
 v0.35.2 (2023-06-01)

 		
 v0.35.1 (2023-04-20)

 		
 v0.35.0 (2023-04-09)

 		
 v0.34.1 (2023-04-06)

 		
 v0.34.0 (2023-04-06)

 		
 v0.33.0 (2023-03-17)

 		
 v0.32.1 (2023-01-26)

 		
 v0.32.0 (2023-01-19)

 		
 v0.31.6 (2022-12-07)

 		
 v0.31.5 (2022-06-13)

 		
 v0.31.4 (2022-04-04)

 		
 v0.31.3 (2022-04-04)

 		
 v0.31.2 (2022-03-25)

 		
 v0.31.1 (2022-03-24)

 		
 v0.31.0 (2022-03-23)

 		
 v0.30.1 (2022-03-22)

 		
 v0.30.0 (2022-02-15)

 		
 v0.29.3 (2021-12-07)

 		
 v0.29.1 (2021-12-03)

 		
 v0.29.0 (2021-11-17)

 		
 v0.28.1 (2021-10-28)

 		
 v0.28.0 (2021-10-15)

 		
 v0.27.1 (2021-09-14))

 		
 v0.27.0 (2021-08-26)

 		
 v0.26.1 (2021-07-29)

 		
 v0.26.0 (2021-07-15)

 		
 v0.25.1 (2021-06-15)

 		
 v0.25.0 (2021-06-07)

 		
 v0.24.1 (2021-06-10)

 		
 v0.24.0 (2021-05-14)

 		
 v0.23.4 (2021-05-03)

 		
 v0.23.3 (2021-04-29)

 		
 v0.23.2 (2021-02-09)

 		
 v0.23.1 (2021-02-08)

 		
 v0.23.0 (2021-02-01)

 		
 v0.22.1 (2020-12-23)

 		
 v0.22.0 (2020-12-10)

 		
 v0.21.0 (2020-10-20)

 		
 v0.20.1 (2020-10-07)

 		
 v0.20.0 (2020-10-02)

 		
 0.19.1 (2020-09-10)

 		
 0.19.0 (2020-09-04)

 		
 0.18.1 (2020-08-07)

 		
 0.18.0 (2020-07-31)

 		
 0.17.2 (2020-07-21)

 		
 0.17.1 (2020-07-09)

 		
 0.17.0 (2020-06-26)

 		
 0.16.0 (2020-06-19)

 		
 0.15.0 (2020-05-08)

 		
 0.14.0 (2020-03-06)

 		
 0.13.1 (2020-02-11)

 		
 0.13.0 (2020-01-28)

 		
 0.12.0 (2019-11-25)

 		
 0.11.0 (2019-11-07)

 		
 0.10.0 (2019-08-07)

 		
 0.9.0 (2019-08-07)

 		
 0.8.0 (2019-07-08)

 		
 0.7.0 (2019-06-24)

 		
 0.6.2 (2019-06-11)

 		
 0.1.0 (2017-02-05)

